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IMIN

ABSTRACT

Analytical studies combining simple one-dimensional models with multidimensional

computer codes have been performed to investigate charging characteristics of an

emitting probe passing through a partially ionized neutral plasma. The effort is directed

at predicting probe potentials as a function of emitted electron and ion currents for a

variety of ambient plasma and neutral densities and temperatures corresponding to those

found at altitudes between 130 and 400 km, where recent sounding rocket experiments have

been performed. Calculations have been made for the early-time transient potentials and

probe surface currents as well as for late-time or steady-state potential-current (I-V)

probe characteristics. Efforts have been directed at explaining the apparently

anomalously low probe potentials and local maxima in probe I-V characteristics which

appear to occur only under conditions of electron emission.

Various possible effects previously identified were investigated, such as space-charge

limiting of the emitted beam, enhanced local plasma produced by the emitting beams,

rocket probe velocity, the earth's magnetic field, and sheath dynamics involving both

space-charge limiting and orbit limiting of the return currents to the probe which act to

neutralize the beam current. Most of these effects were investigated in the early-time

regime (t r 15 is) with the two-dimensional ABORC computer code, and virtually all of

these effects except the enhanced local plasma tend to increase the probe potential for a I
given beam current. None appears to account for a local maxima in potential.

During the course of this effort, ionization of the neutral gas by the returning probe

current (as opposed to the escaping beam current) was postulated as an important

mechanism in the process. Analytical and numerical calculations indicate that this

mechanism can be important in producing anomalously low potentials for electron current

emission but not for ion current, apparently in agreement with rocket observations. It also

can account for a local maximum in I-V characteristics. Calculations with the ABORC

code in the early-time regime indicated only a small effect due to ionization, although

potentials had reached a peak and were beginning to decline. Since late-time calculations
could not be performed in a practical manner with the ABORC code, a one-dimensional

analytical model was formulated to include effects of both space-charge limiting and

ionization. The simplified steady-state model showed a considerable reduction in
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predicted potentials for electron-beam emission with ionization, demonstrating that

ionization of the background gas is a major factor in determining the probe potential in
regimes, where a significant gas density exists. For conditions that were investigated in

some detail (T e v1000-K, N plasma - 10 /cm , Nneutral = 5 x 10'1 /cM ), the probe

potential initially increased with increasing emission current. As the rate of ionization

became significant with increasing emission current, the probe potential reached a

maximum and then decreased at higher emission currents. For high neutral densities

(-10 12/cm 3 ) and relatively high emission currents (--0.1 A), the probe potential appears to

become pinned to the assumed ionization threshold (-40 to 50 eV). It should also be noted

that the potential curve with respect to spatial position is very flat near the probe, so that

the potential difference between the probe and a point located a few meters or less from

the probe would be much less than the probe potential with respect to infinity.
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1. INTRODUCTION

1.1 BACKGROUND

When an emitting probe is inserted into a partially ionized neutral plasma, it will

attain a potential relative to the ambient plasma that is a function of several parameters,

among which are the size and shape of the probe, probe velocity, plasma temperature and

density, neutral gas density and species, magnetic field, beam current and voltage, and

beam polarity. The relative importance of these parameters, the functional dependence of

the probe current-voltage (I-V) characteristics on these parameters, and the way in which

the beam couples to the ionosphere are not yet well understood.

To investigate these effects, a number of experiments involving sounding rockets in

the upper ionosphere have been performed in which the rocket potentials have been

measured for various ion and electron beam conditions. The literature describing these

experiments is included in a companion literature summary report (Ref. 1). Results of

these experiments indicate relatively high probe potentials (-850 V) for relatively low ion

beam currents (-10 - 5 A), and relatively low probe potentials (-100 V) for relatively high

electron currents (-0.1 A). In addition, there is some evidence that a local maximum in

probe potential as a function of emitted electron current has been observed (Ref. 2).

Numerous analytical and computer calculations have been made in an attempt to

explain the observed variation in probe potentials with altitude, emission current and

species, and rocket orientation with respect to the geomagnetic field. Much of this

literature is also described in Reference 1.

It appears that the probe potential for ion emission can be explained on the basis of

Langmuir probe theory, including space-charge and/or orbit limiting, the theories of which

are described in numerous references (see Refs. 3-5). These theories have to be somewhat

modified to account for the geomagnetic field (Refs. 6-7).

The simple Langmuir probe theory does not account for the low observed potentials

associated with electron emission, however. Most of the postulated effects which have

not been treated in detail, such as the geomagnetic field, rocket velocity, and

multidimensionalitv, would appear to result in higher probe potentials rather than in lower

potentials. O'Neil et al. (Ref. 8), using Langmuir probe theory with an enhanced steady-



St ate( vlettroil concenltrat ion near the probe produced by ioni? at ion of the ambient

background by the emitting beam, was able to arrive at relatively low potentials for

electron beam emission.

This explanation is not entirely satisfying for several reasons, particularly for high-

energy emitted beams. First, any ionization produced by the beam would be highly

localized around the beam, and the one-dimensional Langmuir theory used in Reference 8

assumes a uniform enhanced distribution around the entire probe. Second, and just as

important, the return current to the probe equals the emitted current in steady state and

is of lower energy, often a few hundred electronvolts. The ionization rate produced by

these low-energy returning electrons would be substantially higher than that occurring

from the high-energy emitted electrons. Thus, ionization by the return current would

dominate the ionization produced by the emitted current.

It is expected that the probe response would be considerably different, depending on

which mechanism dominates. If ionization by the beam dominates, the return current to

the probe would be largely confined to the region about the beam and the net beam

current leaving the probe would be significantly smaller than the emitted beam current.

Currents flowing on the rocket probe will be correspondingly small. If the return current

is relatively uniform through the plasma, the net beam current will be approximately equal

to the emitted beam current, and substantially higher replacement currents will flow on

the rocket probe.

1.2 APPROACH

The main thrust of the present effort is to explore the mechanisms involved in beam

coupling to the ionosphere, to quantify the probe I-V characteristics as a function of

relevant physical parameters, and to identify a plausible mechanism which might explain a

local maximum in the I-V characteristics for an elect ron-emitting probe.

D~uring the course of these efforts, it became apparent that the ionization of the

neutral background gas by electrons returning to the vehicle to balance the emitted

current would play a dominant role in determining the probe potential. The main question

is whether this process can produce the required magnitude of reduction in probe

potentials at the densities of neutral plasmas corresponding to existing data, and whether

the functional dependence of the potentials on the various physical parameters can be

explained by this mechanism.
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A two-fold approach was adopted with the aim of providing some quick order-of-

magnitude estimates of the effects, along with a longer-term effort that would quantify

the effects in more detail, perhaps in multidimensional geometries if necessary. These

approaches included simple one-dimensional analytical steady-state models using Poisson

equations with ionization of the neutral background by returning electrons, and a two-

dimensional time-dependent computer code with space-charge limiting, ionization, and

magnetic field effects. Near the end ot this effort, a quasi-static two-fluid model of the

electron and ion gas was employed in an attempt to overcome computational difficulties

of the part icle-pushing computer code and obtain two-dimensional time-dependent

information.

The principal analytic treatmenit consisted of a steady-state solution of the Langmuir

space-charge problem with ionization in spherical symmetry. Because of the spherical

symmetry, these solutions cannot rigorously consider the effects of the geomagnetic field,
the velocity of the probe, or the dynamics of the emission beam itself. in Reference 3,

Lam presented a solution to the problem of an emitting spherically symmetric probe

without ionization. This is one of the simplified models that predicted too large potentials

for electron emission. To gain greater insight into the factors that influence the

magnitude of the probe potential, this spherically symmetric model was reexamined under

this program, with a slightly different outer boundary condition than the one used by

Lam. A series solution was found for the potential in the sheath depletion region which

agreed very well with Lam's numerical integration (Section 3). Unfortunately, it does not

appear practical to include ionization effects and produce purely analytical solutions.

Consequently, the equations were solved numerically for the sheath-region potential in a

form that could later be extended to include ionization. As would be expected, the

numerical results from the computer code without ionization are in reasonable agreement
with the analytic results of Lam and, therefore, with the series solution. Consequently,

these calculations also predict too large potentials for electron emission without

ionization.

When ionization is added to the problem, the situation becomes much more com-

plicated because the charge density at a particular radius from the probe is not just a

function of the potential at that position, as it is in the simple models without ionization,

but is a function of the ionization rate at all other points in space and of the potential

difference from the point of interest to those positions. In other words, the charge

carriers at a given location retain some memory of where and at What potential they were

created.
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[0 solve this problem, the previously developed numerical technique was extended to

include ioni/ation, as described in Section 3.4.2. The solution to the problem with

ionization is computationally quite sensitive, especially for mean free ionization distances

less than 10 to 100 m and large emission currents. The result is that the relatively simple

iterative procedure used in the code would not always reach a fully converged solution.

The difficulty undoubtedly could be improved with more refined iteration algorithms.

However, at worst, the calculated results tend to oscillate about the apparently correct

solution. The results clearly indicate that even a relatively low background gas density

(relatively large ionization distance) can greatly reduce the probe potentials from the

predicted values without ionization.

An alternate approach attempted late in this effort was a quasi-static time-dependent

two-fluid computer model of the electron and ion gas, programmed in cylindrically

,ymmetric coordinates using finite-difference techniques; this code was a relatively small

modification to a previously existing code. it was to be utilized in an attempt to

overcome the computational difficulties which arise in all part icle-pushing codes, such as

ABORC, when the particle densities become too large. One of its advantages over the

steady-state models is ti-at it could give the time evolution of the probe potential. In

addition, it can treat more realistic cylindrical probes. Some early results gave promise

that this code could be useful, especially in the high-density regimes. Unfortunately, no

specific results were obtained at the time this report was prepared. Such an approach

appears promising and will be pursued further. The physics and status of this technique

are documented in Appendix A.

The computer code effort was initiated by a review of the known computer codes

thought to be potentially useful for space plasma problems in general and the present

problem in particular (Ref. 1). The 'two-and-a-half"-dimens ion, cylindrically sym metric

computer code AFIORC (Ref. 9) contains many of the desirable features for the present

problem and is reasonably economical to run. This code was modified to include the

earth's magnetic field, an initial ionized background plasma, and ionization of the neutral

gas by the emitted electron beam and the replacement plasma electrons. The advantage

of this code is that its physics are quite rigorous, with a minimum of simplifying

assumptions and approximations. Its main disadvantage is that, for computational reasons,

it is practical to use this code only for early times (t Z 50 lps) after the emission beam is

turned on. In this time regime, it is adequate to simulate the positive ions as an immobile

uniform backgrouind charge density, although that restriction is not inherently necessary in

the AflORC code. I he modifications that were made to the AFIORC code specifically for

this program are described in Section 4, along with the computations and results.

6



1.3 REPORT ORGANIZATION

The initial literature survey of analytic techniques, numerical computer codes, and

rocket orobe experiments is contained in a separate companion volume (Ref. 1). rhe

ionospheric environments, including neutral and ion densities and temperatures as a

function of altitude and time of day, are summarized in Section 2, along with a sample of

the pertinent rocket probe data obtained for both ion and electron emission.

The steady-state analytic approach using Poisson's equation is described in Section 3.

Comparisons to early work by Lanm (Ref. 3) in the absence of ionization are also included.

The principal results of this report, describing the effect of ionization of the neutral gas

by returning electron$ and the local maxima in the I-V characteristics, are also described.

The numerical results using the two-dimensional time-dependent ABORC code are

described in Section 4. Comparisons are made with the one-dimensional numerical work of

Rothwell (Ref. 10). The effects of ionization on the early-time response are reported, as

well as the effects of the magnetic fields. One-dimensional and two-dimensional results

are also compared.

The main results of the effort are summarized in Section 5. A short description of an

alternate numerical approach thought to be capable of describing the time-dependent

behavior of the rocket probe in two dimensions is summarized in Appendix A.

7



2. ENVIRONMENTS AND DATA FOR IONOSPHERIC PROBE EXPERIMENTS

This section briefly describes the ionospheric parameter ranges of interest to the

present work, and surveys experimental data obtained from charged particle beam

excitations by probes at various altitudes. Only the parameters relevant to the

calculational modeling for probe potential are considered. Additional details of the

environment are discussed in Reference 1.

At high altitudes, the sun's radiation causes appreciable photoionization of the

atmosphere. At low gas pressures, recombination of the electrons and ions is slow enough

that high electron concentrations can exist even through the night. Figure 1 shows typical

day and night electron densities as a function of altitude for the extremes of the sunspot

cycle. Above the F2 region, the electron density monotonically decreases out to several

earth radii. Beyond several earth radii, at the outer edge of the protonosphere, the

electron densities are determined by solar wind or interplanetary plasma. For 100- to 500-
km ranges, the electron density varies from 103 to 106 e/cm3 . The electron temperature

can be as large as 1 eV, as discussed in Reference 1. Other less relevant plasma

characteristics for the present purposes are also described there.

The density of neutral species is a strong function of height and exospheric

temperature. Figure 2 shows different species concentrations as a function of altitude for

three different temperatures. The "geometric height' corresponds to the local altitude of

the distributions shown for a given latitude, and the "geopotential height' corresponds to

the altitude at a given latitude of the same isopotential surface (Ref. 11). A reasonable

maximum value is approximately 1013 neutrals/cm3 when all the species are added

together at the 100-km height. It is reasonable to lump the species together in the present

computer model because the cross sections for ionization by electrons are similar in

magnitude and their dependence on electron energy. Notice also that a mean molecular

mass of 30 for the neutrals gives the ions a mass of approximately 55,000 times the

electron mass (corresponding to a velocity -200 times slower for a given energy). Also,

variations as a function of latitude or isopotential surfaces are not of prime concern here,

but rather scoping the parameter range is important.

8
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Figure 1. Example of normal electron distributions at the extremes
of the sunspot cycle at geomagnetic latitudes
of 30 to 40% Curves are from Reference 12.

Ionospheric probe data from several experimenters is summarized in Table 1 and

Figure 3. The table lists the experimental and environmental parameters. Both electron

and positive ion beams of various currents (1) and energies (e&) were employed. A

considerable altitude variation (h) resulted in a wide range of ambient electron densities

(n). The temperatures and densities of the background environment are not provided in the

references in several cases. Probable values from environmental graiphs pris~-nted

previously are indicated by a question mark in the table for those experiments. I'erhapl%



GEOMETRIC HEIGHT (kin) GEOMETRIC HEIGHT (kmn)
500100 150 200 50 500 1000 1500 2000 2500
T00 00 6500 200 250000

E- 10 
1014

20 t:104

z z

cr o'r Ar0~ 1oo 0

02 H0 10 Ar\N 210 H

0 500 1000 1500 2000 0 Soo 1000 1500 2000
GEOPOTENTIAL HEIGHT (kmn) GEOPOTENTIAL HEIGHT (kin)

30 -

GEOMETRIC HEIGHT (ukm)

208 500 1000 1500 2000 2500

T 2000 K7

w'EM 2000, 2

0 0

10 J 240W

Ht 240 K50

Ar 02 N2  0 LLU 700 10

108  1 1 500 K
0 500 2000 2500 2000

GEOPOTENTIAL HEIGHT (kmn)

Figure 2. Number densities of individual atmospheric constituents as a
function of height for three representative exospheric temperatures.
The mean molecular mass as a function of height is shown for
various exospheric temperatures in the lower right diagrams.
Curves are from Reference 11.
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I
the most striking result of the data is the tendency of the probe to linger at 100 V or less
(as measured to -3 m out from the probe in some cases) for electron beam emission. Ion

emission at a much lower beam current than any of the electron-beam cases resulted in a

potential at least 10 times higher for similar environmental parameters. Possible

explanations for this behavior have incuded the background particle mass differences, the
geomagnetic field, and the electron-neutral ionization cross section (which is maximum

near 100 eV). The last item appears to be the major effect limiting the probe potential, as
reported in Section 3. 1he ions have a much lower ionization cross section than the

electrons, and allow the potential to increase further than an electron-beam case. The

analytic theory of Lam (Ref. 3), which does not include ionization effects, was evaluated

and found to be in reasonable agreement with the data for the ion case (see the data points

in Figure 3). The analytical results are discussed further in Section 3.

Table 1. Ionospheric Probe Experimental Data Summary

Experimental Parameters Environment Spec.

Be I h n T
E xperimenter Particles (A) (ev) (kin) (U/cm 3 ) (eV) Rocket/Size Date Reference

Cohen e several 3x10 3  100 120 10 f 0.11 19791 Private comm.
to H. LInnerud

Cohen " 0.1 45003 100 350 2x105l 0.11 19791 3/80

R. O'Neil e" 0.6 2.5x10 3  3-30 80-120 1031 0.14 Precede 10/74 IGR 7/1/78
6 x 0.23 m (Rel. 8)

Arnoldy/Winckler e 0.07 4x10
4  

3-5 3501 2X10 0.11 Echo III >1978 Arnoldy & Winck-
let, UNH rpt '78
(Ref. 13)
Echo IV, Ref. 14

Cohen e 0.01 90 90 1501 0.11 White Sands 1/21/78 GRL 6/79, Cohen
3 x 0.38 m (Ref. 15)

Cohen X*(Z-54) 1.2x10 5  2x103 850 100-400 103  0.11 White Sands 1/21/76 GRL 6/79, Cohen
3 x 0.38 m (Ref. 15)

French-Russian e-? 0.5 1.Sx10 4  100 1 ? I ARAKS 1974 Gendrin
(Ref. 20)

11
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Figure 3. Experimental data of Cohen (Ref. 15) for ion beam emission
from a rocket probe
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3. SPHERICALLY SYMMETRIC STEADY-STATE MODEL

3.1 LAM'S MODEL

In Reference 3, Lam presented a steady-state analysis for a spherically symmetric

emitting probe without ionization. His model is an extension of the tangmuir-Childs

solution, using a different outer boundary condition. He divided the radial distance from

the probe into three regions: (1) a quasi-charge-neutral outer region where the electron

and ion densities are approximately equal, (2) an inner sheath region where the charge

species that is repelled from the probe has essentially zero density, and (3) an

intermediate transition region.

It is useful to repeat his mathematics for the sheath region since it is identical to the

Langmuir-Childs model used for the series solution (Section 3.2) and nearly identical to

what is used in the computer model without ionization in Section 3.4.1.

The potential o at any point is governed by Poisson's equation:

V2 -p (3-1)

where c is the permittivity of free space and pis the charge density of the attacted

species, since the repelled species is assumed to be completely depleted from the sheath

region. The density of the emitted particles is ignored here since their velocities are

usually much greater than the returning particles and, hence, their densities are much less.

In steady state, the returning current must be continuous and equal to the emitted

current:

2
l=-pvA = -47rpvr , (3-2)

where positive I is an outward going current, v is the absolute velocity of the returning

particles, and A is the area of an imaginary shell located at r.

Combining Eqs. 3-2 and 3-1,

V2 2 (3-3)
4 or v
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In the sheath region, the potential will often be considerably greater than the initial

thermal energy of the charged particles. In that case, the particle velocity v can be

obtained by equating the kinetic energy of the particle to the electrostatic potential

energy:

1 2
2 m v = eIl , (3-4)

where m is the mass of the particle and e is the magnitude of the electronic charge. This

assumption is sometimes called the "free-fall' approximation for the attracted species.

Combining Eqs. 3-4 and 3-3 gives

V2 1 - (3-5)

In the sheath region, Lam defines a dimensionless potential,

F = I (3-6)

and a dimensionless inverse distance,

= r /r , (3-7)

where r0 is the outer radius of the sheath region. We have added the absolute value

symbols in Eq. 3-6 to make the results apply to either electron or ion emission. In terms

of these variables, Eq. 3-5 becomes

2 a 2F 1
- = (3-8)

a 2 -

Lam integrates Eq. 3-8 numerically across the depletion region using a boundary

condition at r = r0 which he obtained by matching numerical solutions of his differential

equations in the other two regions. His solution is reproduced here in Table 2.
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Table 2. Tabulation of Function F(T)

T F(t) (from Lam) F(t) (from series solution)

1.0 0.0000 0.0000

1.01 0.00370 0.00369

1.02 0.00929 0.00927

1.03 0.01590 0.01591

1.04 0.02327 0.02322

1.05 0.03125 0.03123

1.10 0.07775 0.07767

1.15 0.13189 0.1319

1.20 0.19131 0.1912

1.25 0.25473 0.2545

1.295 0.31456 0.3144

1.30 0.32135 0.3212

1.S0 0.610 0.6102

2.00 1.41 1.417

3.00 3.19 3.173

10.00 16.4 16.28

100.0 188.0 188.17

3.2 SERIES SOLUTION IN SHEATH REGION

If the outer two regions in Lam's analysis are ignored and 4 is taken to be zero at r =

r0 (as is done in the computer model in Section 3.4), a solution to Eq. 3-8 can be obtained

exactly in terms of a series solution:

F 1 Z4/3 [ 2 £7/3 3 £10/3
F=A £n t+A £n 713 -n ... (3-9)

1 2 3

This series automatically satisfies the two boundary conditions that the potential (F) and

the electric field ( 3F/3r) are zero at the outer boundary of the sheath (t = 1.0). the

constants Ai can be evaluated by substituting Eq. 3-9 into Eq. 3-8 and equating equal

powers of Zn T on both sides of the equation. The result is

1.11£4/3 7/310/3 n13/3

F = 1.7171 Rn 43 + 0.68684 M T + 0.20605 Xn 1 + 0.04766 n1

(3-10)

+ 0.00894 M 16/3 T + 0.00141 kn19/3 +.

The series in Eq. 3-10 may be convergent for all values of Zn T since the coefficients of

F/1.7171 gn 4 / 3 T shown in Eq. 3-10 are smaller than those in the expansion of (e V- l)/V v

in i.
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However, we have not rigorously proven that the higher order terms are convergent.

Consequently, this series will only be used for 0< £n T< 1, where it is clearly convergent.

If the ratio of the sheath radius to the probe radius is not too large (that is,

ro/K '2.718), Eq. 3-10 can be used for the potential profile throughout the sheath region.

For values of r0 /R > 2.718, another series solution, which also satisfies Eq. 3-8, can be

used:

F I A + -1/2 -3/2 -2 -5/2

1 2 3 4 5 6

(3-11)
-3 -7/2 -4

+ B 7 + 3 t + 9  4 +

Note that the terms 1+1/2 and '-1 do not appear in this series. If this series and the first

derivative of F with respect to r are convergent for - = 1.0, Eq. 3-11 can be used

throughout the sheath region from r = r0 to r = R. The coefficients B1i (i ; 3) can be

obtained in terms of B1 and 12 by inserting Eq. 3-11 into Eq. 3-8 and equating coefficients

of equal powers of T on the two sides of the equation. 13 and B2 can then be obtained

using the boundary conditions for the potential and the electric field at the outer edge of

the sheath region (both =0). However, if these series are not sufficiently convergent at t

= 1.0, Eq. 3-10 can be used for the potential profile for 1 < t < 2.718, and Eq. 3-11 can be

used for T > 2.718. [ he coefficients 131 and B2 can then be obtained by matching the

magnitude and first derivative of Eq. 3-11 to the magnitude and first derivative of Eq. 3-

10 at some arbitrary value of T such as -r = 2.718, where Eq. 3-10 is still valid and Eq. 3-11

is more convergent than at -r = 1.0. This is the procedure that has been used here. The

resulting values for the first few B coefficients and the analytic relations of Bi (i >3) to B1

and 132 are given below.

Il = 1.9123

I2 = -3.1532

4 - 1/2B3 = 3 l1 = 0.9642

2 -3/214= It Ys2 11 1 = 0.159

t5 =- it I3I/ = -0.0304

3 2 -5/2
It = 3-__ 2 I1 =0.0843b 70 2 1
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B- 1 -3/2 1 1 -5/2B7 24 B4 '1 16 '2 3 1

2 -3/2 1 2 -5/2 5 3 -7/2
13 -B B +----B B B - -- B B- 0.0727

8  3 5 1 42 3 1 252 2 1

The value of F vs. T from these two series solutions (Eq. 3-10 for T < 2.718 and Iq. 3-11 for

T> 2.718) are compared to Lam's results in Table 2. 1 he agreement is very good over the

whole range of T in the table.

3.3 ANALYTICAL RESULTS

The above results have been used to generate some useful parametric curves. From

Eq. 3-6, the probe potential (at r = R), relative to infinity, is given by

cl =I ,(R)1 1112/3 F(ro/R) (3-12)

For relatively large emission currents I (and therefore large probe potentials ), the outer

boundary of the sheath region r0 can be assumed, with acceptable accuracy, to be the

radial position where the inward thermal current of the attracted carriers just equals the

emission current:
2

I= A =-n 0 q Vt4 r0 , (3-13)

1/2
where vth = (kT/2 m) , no is the density of the attracted species in the bulk, q is its

charge (+ for ions, - for electrons), ki is its thermal energy, and vth is the average

velocity of the total density nO crossing a plane in one direction. If one considers only the

half of nO whose velocities are directed toward a given plane, their average velocity

toward the plane is

T m

Solving Eq. 3-13 for re, the value of T corresponding to the probe radius R is

"r/R= 4 (3-14)
C4, R th n0

Note that -I/q is always a x)sitive quantity.
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I or purposes of numerical evaluation, we take the typical ion mass here to be 46,000

times the electron mass, which corresponds to a mean molecular mass of about 25, based

on f igure 2 for an altitude of about 150 km. With this mass, the potentials become

= 6.1 x 102 12/ 3 F (ro/R) (3-15)

and

9=-2.2 x 104 111/3 F(ro/R) (3-16)

for elect ron and ion emission, respect ively.

It is convenient to specify explicitly the function F(r 0 /R) in terms of the current I.

Io do this, we introduce a current lo, defined as the current due to the thermal electrons

which would strike the probe if the probe potential were zero, and thus the bulk plasma

densities and velocities extended all the way into the probe and radius R:

I = -4i 2 q n l -/ (3-17)

Taking the square root of the ratio of Eqs. 3-13 and 3-17,

rto /,i
K 

0
R 1

I he quantity I /K is shown in Figures 4 and 5 for electrons and for ions with a mass

m = 46,000 times the electron mass me, respectively, as a function of n for various

temperatures. The I-V characteristics for the probe are shown in Figures 6 and 7 for

various values of 10 which in turn depends on R, T, and n.

It is interesting to use these curves to predict the potentials for typical experimental

conditions listed in [able 1 and Figure 3. For electron emission, use an emission current I

0.1 A with a plasma density n = 2 x 10 5/cm 3 and a temperature 1 = 0.1 eV, and assume
an effective probe radius of 0.5 m. From Figure 4, I/ 2 = 0.022 A/m 2 , so 0 =5.5

xi-3 A. From Figure 6, p - 900 V, which is considerably larger than the potentials

measured by Cohen and by Arnoldy/ Winckler for comparable conditions (Table 1). For ion

emission, use I = 1.2 x 10 - A, n = 10 3 /cm , I = 0.1 eV, and R =0.5 m. From Figure 5,

I./' -5 x 10 A/m2, so lo = 1.25 x 10 A. From Figure 7, 40 300 V, which is in fair

agreement with Cohen's data in Table 1 for ion emission (850 V), considering the

uncertainties in the environment conditions and the average value for R.
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Figure 4. Thermal electron current vs. electron density and temperature

For the theoretical data points in Figure 3, an effective spherical probe radius of

0.56 m was used to give the same total probe area as on the cylindrical probe used in the

Cohen experiments (Ref. 15). As noted later, this assumption could help to explain why

the theoretical values are somewhat less than the measured values. The mass of the

returning ions was assumed to be 46,000 times the electron mass, consistent with Eq. 3-16.
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Figure 5. Thermal ion current vs. ion density and temperature

For the emission current of 8 i A in Figure 3, the outer radius of the sheath region (r0 )

is 4 m, 1.26 m, and 0.4 m for bulk ion densities of 10 10 4 , and 10 5 /cm 3 , respectively.

Equation 3-16 and Table 2 (or Figures 5 and 7) then yield the theoretical potentials from

the probe to infinity shown in Figure 3 for n0 = 10 and 104 /cm . It should be noted that

the 4 m sheath radius for 103 /cm 3 is outside the range of the potential-measuring device

used in Reference 15. Hence, for a direct comparison to the experimental data in Figure 3
3 3at 10 /cm the calculated potential should be reduced somewhat. Since the value of r0

20
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0.4 m for 105 /cm 3 is less than the assumed probe radius of 0.56 m, the simple Lam theory

obviously cannot be applied at this higher density. The difficulty is in the assumed radius

of the spherical probe corresponding to the same area as the actual cylindrical probe. At

the high densities where r0 is quite small, it would be more logical to use an effective

spherical probe with a radius closer to the radius of the cylindrical probe (0.19 m). Using a

radius of 0.19 m for the spherical probe at a density of 105 /cm 3 , Lam's theory yields a

potential of about 12 V, which is considerably larger than the experimental values. This

calculation just illustrates the rather obvious conclusion that, when the sheath radius is

not too much larger than the probe dimensions, the detailed shape of the probe becomes

more important and one should use a more correct geometrical model of the probe, if

possible. Even at the lower densities, a smaller effective radius for the probe would

increase the calculated potentials, bringing them into closer agreement with the measured

values.
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FlIure 6. Probe potential vs. electron beam current for different
plasma environments
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Figure 7. Probe potential vs. ion beam current for different
plasma environments

The relative potential as a function of radial distance is shown in Figure 8. The

potential is set equal to zero at r/r 0 = 1, that is, when r is at the virtual cathode located

at r = r0 . The potential rises until the probe is reached at r = R.

Some additional curves that can be useful for planning probe experiments are given in

Figure 9. One curve shows the mean ionization path length (A) versus the density (N) of

the neutral background air molecules for the peak ionization cross section (assumed to be

2 x 10 " 1 6 cm 2 ). The significance of this parameter is discussed in Section 3.4.2. The

other set of curves shows the radius (ro) of the sheath region as a function of the bulk

plasma density (n) and the emission current of electrons (I) for a plasma electron
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temperature of 10000K. For ion emission, the r0 values in Figure 9 should be multiplied

by of;iAme . The equation shown on the figure for 00.L. is the probe potential at which

orbital limiting starts to occur. It is obtained from Eq. 3-21 in Section 3.5 by solving for

*, letting p = r0 , and identifying 1/2 mV 0
2 with kT. For values of probe

potential 0- > b.L., all electrons that start at r0 with a component of velocity pointing

toward the probe will be captured by the probe and thus there is no orbital limiting.

However, for 0. < 0O.L.' some of the electrons that start at r0 will circle about the

probe without striking ;t, which means orbital limiting does occur. This figure and

equation are applicable even if ionization of the neutral atoms occurs and reduces the

probe potential below the Lam value for no ionization, as discussed in Section 3.4. A

similar set of curves that is only applicable without ionization is shown in Figure 10. In

this figure, at the probe potential corresponding to a given current and ro/R, if r0 /R is less

than the impact parameter p/R, orbital limiting will not occur. For example, for I =0.01 A

and *. = 1000 V, ro/R s 20. If kT = 1 eV, p/R 2- 30, so orbital limiting does not occur. On

the other hand, for kT - 10 eV, p/R 10, so orbital limiting would occur.

101

1002'1 W

10'l

10 IK.1 toit0

Filgure 8. Potential spatial variation away from probe
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3.4 COMPUTER MODEL AND RESULTS

In the following discussion, the emitted, and therefore the attracted particles are

taken to be electrons because ionization effects will normally be important only for

electron emission and the main purpose of this code is to study ionization effects.

3.4.1 Model Without Ionization

The computer model without ionization is very similar to Lam's model in the depletion

region. The only differences are in the outer boundary condition and a slight difference in

the equation for the electron velocity.

in this model, the outer boundary of the problem is taken to be the edge of the

depletion region. instead of having a smooth transition from the depletion region to the

bulk, as in Lam's model, the present model assumes a sharp transition from the depletion

region, where the ions are completely swept out, to the bulk region where the ion density

is equal to the bulk density. This approximation, which is the same one used for the series

solutions in Section 3.2, is justified for relatively high electron emission currents, where

the potentials are relatively large compared to the ion thermal energy and the sheath

region is large compared to the transition region. Since the net charge outside the

depletion region boundary is assumed to be identically zero, the electric field at the

boundary is zero, and the potential * is defined to be zero at that point. A central

element of this model is that the outer edge of z~he sheath is given by the condition that

the inward electron thermal current just equals the electron emission current (Eq. 3-13).

The second difference between the computer model and Lam's model and the series

solutions is that the radial electron velocity at a position where the potential is is given

in the code by

Ve =v th+ 2e /m. (3-18)

where e is the absolute value of the electronic charge. This difference from the electron

velocity in Eq. 3-4 is significant only close to to where * is very small. If Eq. 3-4 were

used instead of Eq. 3-18, the carrier densities (-4/4ir 2 v el Eq. 3-2) close to r 0 would be

considerably greater than the bulk density no, and the average radial velocity y e would be

correspondingly less than vth* The use of Eq. 3-18 ensures a smooth variation of ne across

the boundary region. No analysis has been performed to determine how much this change

affects the overall probe potential. However, since it was convenient and easy to

incorporate into the code, this cliangt ha% lweti ut~lg,'*d.

With no ionization, it is a straightforward matter in the code to Integrate I'oisson's

equation inward, starting from the sheath boundary r = ro, where * and the electric field
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both equal zero in this model. Using a finite-difference mesh grid where the potentials,

and consequently the velocities and carrier densities, are defined on the mesh points and

the electric fields are defined at the half-mesh points, the integration can proceed from

mesh to adjacent mesh, from r = r0 to the probe radius, r = R.

Table 3 shows a comparison of calculated probe potentials obtained with this code

(with no ionization and with fully depleted ions in the sheath region) with results from

Lam. The agreement is quite satisfactory considering the differences in the two models.

Table 3. Comparison of Results from Computer Model with Lam

Plasma Density 103/cm 3

Electron Thermal Emission Current Potential (V) for 1-m-radius probe
Energy (eV) (A) Lam Computer Model

(No ions or ionizaton)

10.0 6 x 10' 3  28 28.5

10.0 6 x 10- 2  852 960

0.1 6 x 10- 3  184 230

With the computer model, it is also possible to simulate the condition of electron

emission and an electron return current with a fixed background of positive charge equal

to the bulk ion density. This calculation would correspond to the early-time ABORC

calculations before the ions have had time to be swept out of the sheath region. Table 4

shows a comparison of the probe potentials from this code for fixed and swept-out ions and

with the corresponding ABORC calculations with fixed ions. The comparison of the fixed-

ion results with ABORC is quite good for large emission currents, especially considering

the differences in the geometry and calculational techniques. The reason for the

differences at low beam currents is not known for sure, but one possibility is orbital

limiting, which is present in ABORC but not in the steady-state code. From Figure 10, for

I = 6 x 10- 3 A and 0 between 7 and 30 V, the curve for rfy/R is above the curve of p/R for

kT = 10 eV. Hence orbital limiting is occurring for this case and the potentials should be

larger than predicted by the steady state theory. Therefore, it is reasonable that the

ABORC code should give a larger potential for this case. As discussed in Section 3.5, the

orbital-limiting effect is largest when the electron thermal energy is relatively large

compared to the probe potential, as is the case for the lower emission currents in
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Table 4. For more realistic thermal energies (- 0.1 eV), this effect should be less

important even for probe potentials as low as 10 eV.

Table 4. Effect of Stationary Ions

(Plasma Density a 103/cm 3 )

Probe Potential (V)
Steady-State Code,

Electron Emission 1-m-radiu Sphere ABORC,
Thermal Current Ions Swept Fixed 1-m-radius cylinder
E nersy (eV) (A) Out Ions Fixed ions

10 6 x 10- 3  28.5 7.6 30
10 6 x 10"2  960 165 280
10 0.6 S kV 2.2 kV 2.7 kV

0.1 6 x 10 "3  230 8.6 --

It is interesting that the predicted potentials with the fixed ions are considerably

smaller than the predicted potentials when the ions are assumed to be completely swept

out of the sheath region. The physical reason for these lower potentials is fairly clear

from the code calculations. When the ions are not present, the electron density tends to

be less than in the bulk, in spite of the 1/r 2 geometry effect, as the probe potential

accelerates the electrons toward the probe. On the other hand, with the ions present, the

electron density tends to stay roughly equal to the ion density. Therefore, to supply the

same return current, the high-density electrons in the fixed-ion case do not have to move

as rapidly as the low-density electrons in the fully depleted case, and thus, the probe

potential can be smaller. This difference in potential should be observable in a time-

dependent .alculation, and perhaps in an experiment with a low emission current and small

probe potential such that ionization is not a major effect. When the electron beam is first

turned on, the probe potential should quickly rise to a plateau corresponding to the fixed-

ion case. Then, on a time scale corresponding to the ion sweepout time, the probe poten-

tial should gradually rise toward the value in the fully depleted case. However, this time-

dependent effect might be obscured when ionization effects are large and have a major

influence on the probe potential, as discussed in the next section.
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The important result from this analysis is that the predicted potentials in Table 3 with

movable ions are considerably larger than the measured probe potentials with electron

emission (Table 1). Therefore, some important physics is apparently missing from the non-

ionizat ion model used thus far.

3.4.2 Model with Ionization

When an electron in air achieves a kinetic energy greater than the ionization energy

of the air molecules, there is a finite probability that it will produce additional elect ron-

ion pairs. If this ionization occurs in a region where an electric field exists, the newly

created electrons and positive ions will be accelerated in opposite directions, and thus,

both species will contribute to the electric current. If the electric fields are large enough

over a sufficient distance, the new electrons will reach a kinetic energy greater than the

ionization energy and, thus, can produce additional ionization. This multiplying effect is

known as avalanching.

To simulate ionization effects in the steady-state computer code, the ionization

probability curve versus electron energy was approximated as a linearly increasing curve

starting at 50 eV and going to 200 eV. Above 200 eV, the probability curve was assumed to

be flat for all higher energies. To smooth the calculations near the discontinuities at 50

and 200 eV, a smooth parabolic transition was used, extending 10 eV on either side of each

discontinuity. This assumed ionization curve has a somewhat higher threshold energy than

the experimental curve for oxygen in Figure 14 (see Section 4). It is believed that the

detailed shape of this ionization curve will not have a major effect on the computed

results. However, this shape could be easily modified for other calculations if desired.

The peak magnitude of the probability curve is an input parameter in the code

corresponding to different densities of the neutral background gas. This Odrameter is

given in terms of the mean distance for ionization (AX) by an electron with nergy greater

than 200 eV -- that is, with the maximum ionization probability.

Ionization can come from three different sources of electrons: (1) emitted electrons,

(2) return electrons which originate at the outer boundary of the sheath region, and (3)

electrons created by the ionization which are then accelerated to energies above the

ionization threshold. in the present code, ionization by the emitted electrons is ignored

because their density, when averaged over a spherical shell around the probe, is

considerably less than the density of the returning electrons. Also, the energy of the

emitted electrons is often quite high, and the ionization probability actually decreases at

high energies, contrary to what was assumed above for the code.
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When the code was first being written, it was intended to include ionization by the

newly created electrons which are then accelerated to the ionization threshold. However,

some calculations with an earlier, simpler version of the code indicated that, whenever

ionization is significant, the potential curve becomes relatively flat and the ionization

electrons seldom reach the energy for the ionization threshold. Therefore, ionization by

these electrons, that is, avalanching, has been omitted from the code for simplicity,

although it could be added with not too much complexity if it were thought to be

important. Thus, only ionization by the electrons which return from the outer boundary of

the sheath are included in the code.

Ionization is incorporated into the code as a carrier generation rate, dn/dt, in each

mesh region proportional to the density of electrons passing through that zone and as a

function of their local energy. Both the electrons and the ions are assumed to be created

with zero initial velocities. In steady state, dn/dt at a specific mesh station j will

contribute to the electron current and density at all mesh stations i closer to the probe

than j, and to the ion current and density at all mesh stations k further from the probe

than j.

The velocity of the electrons from region j when they reach region i is taken to be

ve(i)= /Le (i) - ( , (3-19)
e

where (i) and V(j) are the potentials at regions i and j. (In the sign convention used in the

code, the potentials are positive for electron emission.) Since physical reasoning indicates

that the potential curve must increase monotonically from the outer edge of the sheath to

the probe, the argument of the square root in Eq. 3-19 is always positive.

If there were no sweepout velocity due to the motion of the probe relative to the

ambient plasma, the velocity of the ions from region j when they reach region k would be

given by an equation similar to Eq. 3-19 but with 0(i) replaced by 4(j), (j) replaced by O(k),

and me replaced by the ion mass mi. It is not possible to simulate rigorously a linear

sweepout velocity in a spherically symmetric geometry. However, in an admittedly rather

crude attempt to include some effect of sweepout, the ions were given an additional radial

outward velocity vs . Thus, the ion velocity at position k was calculated from the formula

vi(k)= /v2 + 2 .(k) . (3-20)
s m.
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For all of the results presented later, the magnitude of m i was taken to be 2 x 104 me

and vs was taken to be 5000 m/s, which is probably somewhat high for typical probe

velocities. However, again it is felt that this value would not have a major effect on the

conclusions from this study. If desired, the magnitude of vs could be changed for future

calculations.

The charge density p in Poisson's equation (Eq. 3-1) is the algebraic sum at each mesh

position of the densities from the inward-bound electrons that originally crossed the outer

boundary of the sheath region (as in the zero-ionization case) and the electrons and ions

created by the ionization process.

The steady-state solution to this problem with ionization is mathematically very

sensitive at high emission currents and relatively small mean ionization

distances ( X Z 100 m). The reason is that the potential curve with heavy ionization

becomes very flat after the potential reaches the ionization threshold around 50 eV.

Therefore, the velocities of the electrons and ions that were created by the ionization due

to the returning electrons (Eqs. 3-19 and 3-20) become quite small and the corresponding

densities become very large. To solve this problem even for values of X as large as 1000

m, it was necessary to use a calculational approach which inverts a linearized 2N x 2N

matrix, where N is the number of mesh regions used in the calculations, typically about

100. The factor of 2 occurs because both * and its derivative (E) are used as variables.

Since the equations are very nonlinear, the procedure used is to estimate initial potential

and electric field curves over all of the meshes. The equations are then linearized for per-

turbations in 0 and E from these initial curves. This linearized matrix is then inverted to

obtain the changes in E and 4.

In principle, one would like to use these new curves for 0 and E around which to again

expand the equations and, thus, repeat the process until the calculated changes in E and 4

are less than some selected limit. Unfortunately, the new calculated 4 curve is often not

monotonically increasing across the sheath region. Consequently, this curve cannot be

used since Eq. 3-19, and perhaps Eq. 3-20, would give imaginary velocities. Thus, after the

linearized changes to E and 0 have been calculated, some other algorithm is needed to

choose a new estimated 4 curve that is monotonically increasing. There is an infinite

number of ways this could be done, since any procedure that is convergent should

theoretically arrive at essentially the same converged result. The procedure that has been

used is to adjust the old values of E by some fraction F1 of the calculated perturbations in

E at every mesh station, provided that the new adjusted E is not negative. If any new E

were negative, the old (positive) E at that mesh is reduced by some fraction F2 of its
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value. These estimated E's are then integrated from ro inward to obtain the corresponding

potential curve about which the equations are again expanded. There is no guarantee that

this procedure will always be stable, especially if F1 and/or F2 are made too large in an

attempt to speed up the convergence. in fact, at large currents and small X~s, it was often

difficult to obtain satisfactorily converged solutions. If this code were to be used in the

future for those more difficult situations, this adjustment algorithm should be reviewed

and perhaps modified.

All the calculations with this code thus far have been for an ambient ionized plasma

density of 10 3/cm 3 and an electron temperature of 1000'K (koT = 0.086 eV). Figure 11

shows curves of the calculated potential versus distance from the probe for an emission

current of 0.1 A, with no ionization ()L = -) and X= 1000 and 100 m. Note in particular

the flatness of the potential curve for X= 100 m and how far the plateau extends from the

probe. Assuming a peak value for the ionization cross section of 2 x 10 cm , a value of

X = 100 m corresponds to a density of neutral background atoms of 5 x 10+ 11/cm . A

similar calculation for X= 10 m did not completely converge, but the plateau potential was

approximately 50 eV. Based on experience with the other X's, it is expected that

essentially this potential would extend in to the probe. Obviously, ionization distances

even as large as 100 m have a very pronounced effect on the magnitude of the probe

potential to infinity. It also affects the shape of the potential curve throughout the sheath

region, and especially close to the probe. Thus, if the technique for determining the probe

potential experimentally only measures the differential potential between the probe and a

point in space a few meters away, this measured differential potential might be only a

small fraction of the probe potential to infinity.

It is fairly clear why the potential approaches a constant value equal to the ionization

threshold energy at relatively small values of A. The incoming electrons will create

electron-ion pairs more or less uniformly throughout the volume near the probe where the

local potential is greater than the threshold energy. The electric field in this region will

accelerate the electrons toward the probe and the ions away from the probe. The electric

field that results from this separation of the negative and positive charges will decrease

the electric field that had existed before the separation. For large A and small beam

currents, the density of the electron-ion pairs will be small and the reduction which they

produce in the electric fields, and therefore the probe potential, will be small.

Conversely, for small X and large currents, the electric field produced by the electron-ion

pairs can almost completely cancel the p)reviously existing field. Mf course, the field

cannot become negative in steady state because the electrons must always be attracted
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toward the probe. in the limit of very high ionization density, the electric field must be

just sufficient to remove the electrons from the ionization region at the same rate that

the ions are removed, primarily by their assumed sweepout velocity, vs . only a fraction of

an electronvolt potential difference is required to produce an electron velocity equal to

the assumed value of v. 5000 rn/s. Hence, in that case, the potential curve in the

ionization region will be very flat and close to the ionization threshold energy.

10 4

EDGE OF PROB EII

10 3 ASSUMED
10 IONIZATION CURVE

=1000M

10250 200 eV

X~ 101

101
1 0.1 A

Te 1000"

X MEAN FREE PATH FOR IONIZATION

10 0

0 10 20 30

RE-03355 METERS FROM CENTER OF PROBE

Figure 11. Radial variation of potential for different ionization rates

Figure 12 shows similar potential curves for different emission currents. The

interesting point from this figure is that the probe potential to infinity actually goes

through a maximum as a function of the emission current. This maximum is illustrated in

Figure 13, where the potentials at the probe in Figure 12 are plotted versus the emission
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current. At small values of current, the probe potential is less than the assumed

ionization threshold (40 eV), so there is no ionization and the calculated probe potentials

agree with the Langmuir-Child prediction. Perhaps just as significant, the differential

potential between the probe and a point a few meters from the probe is much larger at a

current of 0.01 A than it is at currents of 0.04 A and above.
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Figure 12. Potential profiles for different emission currents
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Figure 13. Probe potential versus beam current

The reason for the peak in the I-V curve is not as clear as the reason for the plateau

in the potential curve. However, a plausibility argument can be developed by considering

the curves in Figure 12. For a current of about 0.003 A, the probe potential is about

100 V, which is well above the ionization threshold. However, the radial distance over

which the potential exceeds the ionization threshold is fairly small and not many

ionization events occur in that distance. On the other hand, when the current is over an

order of magnitude larger ( 0.04 A), the potential reaches the ionization threshold

about 10 m from the probe. Hence, there is a long distance over which ionization will

occur and there is over an order of magnitude more returning electrons to create the

ionization. This abundance of secondary electrons causes the potential to remain closer to

the ionization threshold, that is, less than the potential at a smaller current. It is

interesting that the peak in the I-V curve will probably be less pronounced for very large
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vehicles. For example, from Figure 12, if the probe radius had been, say, 10 m, essentially

the same potential curves outside that radius would occur for the same currents. Although

other curves at higher currents are needed to prove the point conclusively, it appears that

the maximum potential for a 10 m-radius sphere might be only about 60 V.

Although it is unclear what densities of neutral atoms, and therefore Vs, should be

associated with the data points in Table 1, the calculated probe potential in Figures 11 and

12 for AL's on the order of 100 m or less are in much better agreement with measured probe

potentials for electron emission than are the predictions such as those in Table 3, which do

not include ionization.

3.5 ORBITAL LIMITING

At this time, a brief discussion of orbital limiting is useful.

Consider a particle with mass and charge q, which has a velocity v0 in a region where

the electrostatic potential * is zero. If this particle is attracted by a central force field

toward a probe with radius R, it will strike the probe if its initial impact parameter is less

than

2q 0\1/2
p = R 2 (3-21)

my 0

where . is the probe potential relative to infinity (Ref. 5). Note that is positive if the

attracted charge q is negative. If its impact parameter is greater than p, the particle will

miss the probe and continue on its p:th about the probe.

If we identify (1/2 m vo 2 ) with the thermal energy of electrons at infinity (kT = 0.086

eV for the proberi-s in Section 3.4) and assume a probe potential of, say, 200 V, and R = 1

m, the critical impact parameter p is 48 m. By comparison, the outer radius of the sheath

r 0 for an emission current of 0.1 A is 31.8 m for the plasma conditions used in

Section 3.4. Thus, every particle at r0 that has a component of its velocity directed

toward the probe has an impact parameter smaller than p = 48 m and would be captured by

the probe. Consequently, using the free-fall approximation for the electron velocities

(Eqs. 3-18 and 3-19) appears justified for such a potential.

From Figures 11 and 12, the probe potentials with very high ionization might be as

low as 40 eV. If we use this potential in Eq. 3-21 instead of the 200 V assumed above, the

critical impact parameter would be only 18.5 m. This would indicate that the free-fall

approximation would be inaccurate for emission currents greater than about 0.035 A (r0 >
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11S~.5 in). I lowi-ver, when t here is a large amount of ioniz at ion, a more realistic criterion

for the critical impact parameter might be to use an effective probe radius R in Eq. 3-21

equal to the location of the knee in the potential curve -- about 15 to 203 m for I =0.1 A

(Figure 11). Obviously, this approach would produce an extremely large allowable impact

parameter. The rationale for this criterion is that the incoming electrons start to produce

electron-ion pairs when they reach the ionization threshold, that is, at the knee in the

potential curve. These ionization electrons are created with very small initial velocities

and all of them are eventually captured by the probe. They can supply the difference in

the return current to the probe with only a negligible change in potential if all of the

primary electrons strike the probe in one case or if some of them miss the probe and orbit

about it in another case. Hence, even if some orbit limiting does occur, it will have only a

minor effect on the probe potential when there is high ionization.

A more rigorous discussion of orbital limiting should consider a Maxwellian

distribution of the initial plasma electrons, as was done in Reference 5. On page 130 of

Reference 5, it is shown that the current collected by a spherical probe with no ionization

is very nearly the thermal electron current that crosses the sheath boundary at r =r0

whenever

exp [2-R221q p ,/kT

is small compared to unity. This quantity is the exponential e- 4 in Equation 45 of

Reference 5. for .= 200 V, r 0 = 31.8 m, and T = 1000*K, the magnitude of the above

exponential is about 0.1, so the criterion is reasonably well satisfied. Actually, with no

ionization and this current, 4. would be much greater than 200 V, so the criterion would

be satisfied even better. With ionization, the effective radius R of the probe should be

increased, for the reasons discussed previously. This would make the absolute magnitude

of the argument of the exponential larger, even for 4~50 V, so the exponential would be

less than 0.1.

In summary, for the range of parameters used thus far in the computer model, and

probably for the major range of interest, orbital limiting appears to be an insignificant

effect, and the free-fall approximation for the attracted electrons is well justified.
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4. ABORC CALCULATIONS

This section describes calculations of electron-beam emissions performed self-

consistently in 2-1/2 dimensions using the ABORC SCEMP computer code (Ref. 9). 'Self-

consistent' in this context means that electromagnetic fields can alter charged particle

trajectories, thus affecting spatial currents and the fields themselves. Advantages of the

numerical approach described here are the minimization of environmental assumptions,

capability to meet multidimensional geometries, and ease of operation of a previously

existing tool. The code employs a full description of negative and positive particles which

can move self-consistently in electromagnetic fields obtained from finite-differenced

Maxwell's equations, and computes the time evolution of fields and currents around the

vehicle. This allows for effects of orbital limiting, space-charge limiting, and the

geomagnetic field automatically in the simulations. The approach has many similarities to

that of Rothwell, executed previously in one dimension (Ref. 10). A test problem

compatible with both ABORC and Rothwell's code was executed at AFGL's direction and

gave similar results, as discussed below.

Disadvantages of using particle-pushing codes such as ABORC are typically the large

computer core and execution time required to obtain stability and statistical accuracy in

certain parameter ranges of interests (Ref. 16), particularly late-time conditions.

Therefore, the results obtained for the present problem with the computer code are

limited to a small fraction of the relevant parameter space--in particular, relatively low

plasma densities and large plasma temperatures, and to relatively early times in the

complex evolution of the probe/beam/environment system. However, usage of the code

elucidates complex behavior caused by geometry, space-charge-limiting, and magnetic

field effects, which would be much more difficult to address with simpler analytic

models. Also, relevant parameters for analytic models can be determined by exercising

the particle model for variations in the parameters. Results can be employed in

constructing other models capable of solving the entire parameter range of interest.

The remainder of this section describes the computer code and modifications added to

simulate the background plasma and the earth's magnetic field. The rudiments of the

model are described and exercized for simple cases. Predictions of the effects of geomag-

netic field and background ionization on the probe response are presented for wide ranges
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of beam currents. Finally, a discussion of results in terms of the available experimental

data is given, and implications for future measurements of interest are considered. Some

of the initial modeling and results leading to the calculations reported here are discussed

in Reference 17.

4.1 DESCRIPTION OF THE STANDARD ABORC CODE

ABORC is designed to solve Maxwell's equations by direct-finite-differencing in gene-

ralized coordinates for axisymmetric geometries. Spatial current densities are obtained

from finite 'particles' of charge which are followed through the spatial mesh of zones.

Each particle represents many negative or positive charges and is acted on by the local

electric and magnetic fields during each time step. Emission of arbitrary energy, angular,

spatial, and time distributions of currents can be specified. The calculational volume may

contain either conductors or vacuum, with variable conductivity, permittivity, and

permeability (o, e, j ).

Boundary conditions for the ABORC code require the specification of an outer,

perfectly conducting cylinder. Free-space solutions can be obtained by moving the outer

boundary out so that there are many plasma Debye lengths between the probe and the

outer walls (Refs. 17-18). Finite conductivities can be specified representing imperfect

conductors, and dielectric structures and high-permeability regions may be treated.

Backscattering of electrons can be specified where charge is re-emitted from surfaces

upon contact.

The code was typically dimensioned for 6,000 spatial zones which may vary in size.

Up to 100 conducting regions for specification of bodies of revolution can be employed.

Randomizing techniques were employed for electron emission distributions. As many as

8,000 particles were tracked during any given time step for as many time steps as

desired. The code is written in FORTRAN, and typical computer times vary from 3 to 60

min on the CDC 7600 (or approximately 5 times longer on the CDC 6600).

4.2 MODIFICATIONS FOR THE PLASMA-PROBE CALCULATION

The plasma-probe calculations required additions to the standard code for

specification of the ambient ionized plasma, the magnetic field, and ionization of the

neutral particles by electrons. The modeling for these additions is described here, along

with modifications permitting use of the system on the AFGL CDC-6600 computers.
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The background plasma is modeled by a large number of negative macroparticles

representing electrons, and stationary positive macroparticles representing ions. The

positive macroparticles are a direct and computationally free result of the fact that the

code basically creates a quasi-neutral plasma at time zero and then moves the electrons

while the ions remain fixed. The initial energy distribution of the electrons is rectangular

with midpoint temperature value T (interpreted loosely as the plasma temperature) and

with a spread equal to T; that is, the distribution extends from T/2 to 3 T/2 with a

constant magnitude. The initial angular distribution is isotropic, and the number density,

n, is constant, ignoring the steady-state sheath t-hat actually develops around a spacecraft.

This is a good approximation as long as the probe potential wits the beam on is large

compared to the plasma temperature, and therefore large compared to the probe potential

before the beam is turned on. The plasma is constantly exiting and entering at the outer

boundaries of the simulation volume. Assuming that the boundaries are far enough away

from the probe, a constant flux of electrons (equal to nev/2, where v is the average

normal velo,.ity) strikes the walls. The plasma loss is compensated by a constant inward

emission of plasma particles from the outer boundary, corresponding to the thermal

motion only.

The simplifying assumptions in the plasma description are thought to be justified for

the present calculations. Ions move approximately 1/10 of a probe dimension in the first

10 us calculated here, so a zero velocity for the ions introduces very little error. A

similar argument applies to a zero assumed rocket ,elocity. The uniform energy

distribution assumption has not been tested for accuracy in the present work, but it is not

thought to introduce any significant error.

Effects of the geomagnetic field are modeled with the field along the axis of the

cylindrical coordinate system due to rotational symmetry requirements in the code. The

appropriate terms were included in the Maxwell's equations:

3Z = r r'

at1 atNr z

az ar 1 le

1 a aH r

r r (rH,) - = 6 *

aE 0
3Z

39
4.



r z I

1ia
r sr(rE) = Z H

where each term which references E E, HzP or H r has been newly added for the effects of

the geomagnetic field. The particle equations of motion become:

v = v + (E vB - vB)
z z my Z r r

+ qAt (E B B
r r my r z z

v v ~ ' + I- ++

+ Y+ t q tE (v+  )Er ( r +vE+E E,(v + v)= 2mc 2 rE z  (Vr + Vr )  +  v6 v6)

where the superscript + denotes values at the end of the time step, and the newly added

terms in the equations which treat the geomagnetic effects are those referencing E0 , Bz,

and Br.  Also, the substitution 9 = iH has been employed, where tj is the permeability of

free space. More detail on the development and solution of these equations is given in

Reference 9.

Simulations begin with a constant value for the geomagnetic field, Bez, everywhere

in the grid at time zero. As particles gradually pick up a net azimuthal velocity, a
magnetic field is generated in the opposite direction to Be. The opposing field is, in

general, spatially dependent. Hence, the particle motion and fields are calculated 'self-

cons istently.'

Ionization of neutral species is modeled using the cross section shown in Figure 14

(from Ref. 19). A single curve for atomic oxygen represents ionization by electrons of all

species present in the ionosphere in the present model. The accuracy of the cross section

is within a factor of 2 for the other species over most of the energy range, which is

sufficient for the present model accuracy. In particular, the peak cross section for N2 ,

which is the other dominant species at the altitudes of interest for sounding rockets, is

about 2.5 x 10"16 cm 2 and it also occurs around 100 eV. In the code, the oxygen cross

section curve is approximated by a curve fit to Figure 14. The code emits new particles

representing ionization products when the calculated charge buildup in a zone due to
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ionization reaches some fraction of the ambient electron density. Specifically, a particle

is emitted in a cell due to ionization when the following is true.

dn
N Jff o v dR dt > fn

where f is an input parameter (typically set equal to 1), dn/dt is the energy spectrum of

electrons in each zone, n is the total number, v is their velocity, and N is the neutral

number density. The emitted electron is assumed to have 1 eV initial energy and random

isotropic direction, and leaves behind a stationary ion.

ATOMIC OXYGEN (0)

I10-1

Uj

CA

10-17

101 102  103  10 10

ELECTRON ENERGY (eV)
RE-03026

A ov dS CALCULATED AT EACH SPATIAL POSITION FOR BEAM AND PLASMA ELECTRONS

* SECONDARY ELECTRON PARTICLES EMITTED FROM EACH CELL WHEN THE CHARGE DENSITY

DUE TO IONIZATION BECOMES COMPARABLE TO INITIAL BACKGROUND ELECTRON DENSITY

• SECONDARIES EMITTED WITH I-eV ENERGY

COLLISIONAL ENERGY LOSS AND RANDOMIZING OF DIRECTION OF IONIZING PARTICLES

NEGLECTED

Figure 14. Summary of treatment of ionization of neutral particles
by electrons in the ABORC particle model for dynamic
probe behavior
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4.3 COMPUTER MODEL FOR THE PROBE, BEAM, AND PLASMA

the AI(OK( model for the probe, electron beam, and background plasma is illustrated

in figure 15. Major parameters defining problem components are listed on the right. The

symbols are used in the remainder of this section to define problem input parameters. The

probe has been considered to be a simple cylinder primarily for purposes of comparing

initial results of the calculations with simpler spherical models. A more realistic rocket-

shaped geometry could be treated by the code, and may behave somewhat differently in

magnitude, but will probably show the same qualitative behavior as a function of major

parameters. It is assumed that electrons which strike the probe are not re-emitted

because secondary electrons generally have low energies (around 2 eV), so they would be

immediately attracted back to the vehicle and thus produce negligible effects. However,

a problem at higher plasma density or lower beam energy might require the inclusion of

secondary electrons. Treating the vehicle as stationary should introduce minimal errors

for cases where the ionization of background neutrals is neglected. The time scale to

move an object dimension is much longer than the plasma frequency. A stationary ion

model should be sufficient for the same reason.

Beam parameters define the energy, angular, spatial, and temporal characteristics

assumed in the analyses. The values shown are intended to represent a recent experiment

by Cohen (Ref. 2) within the ability of the computer model. In actuality, the beams are

highly concentrated over a small area, are emitted at some angle to the geomagnetic

field, and are confined to a smaller angular spread. In the code, the beam is assumed to be

emitted over a much larger area to ensure that several finite-difference zones are

overlapped by it. The rotational symmetry requirement allows a pencil beam along the

coordinate system axis parallel to the geomagnetic field only. For emission at an angle to

the field, the beam must necessarily fan out like a cone, as illustrated. This restriction

introduces questionable geometry differences between the experiments and the analytical

models, but it does not inhibit magnetic field effects on the beam transport. The beam

angular spread is small in the code, as it is in the experiments. The pulse shape is a step

function at time zero which accurately models the time interval treated by the code.

The pertinent plasma quantities are the initial electron-ion number densities and

temperatures and the neutral species densities. The values shown are for the ranges

considered in the present calculations. The 10-eV electron temperature is artificially high

(1 eV is the physically reasonable upper limit), but it was employed in most cases as an

economy measure during the development stages of the modeling. The positive ions have
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i been taken to be stationary during the early time evolution (-20 ps) due to their relatively

large mass. The computer code could treat them as mobile, but they were omitted for

reasons of economy.

INPUT PARAMETERS

PROBE

SHAPE CYLINDER

SIZE LENGTH = DIAMETER 2 m

MATERIAL PERFECT CONDUCTOR,
Be ZERO CHARGE ALBEDO

VELOCITY, v 0

ENERGY, 9 4.5 keV
ENERGY SPREAD 1 keV

PITCH ANGLE, e 0 and 700

PLASM4A PROBE BE, PITCH ANGLE SPREAD 100

- 2 m - CURRENT, I (amp) 10 3 102 I01, 100. 101

T AREA 3 m

N 0 RISE TIME 0

PULSE WIDTH -

PLASMA ENVIRONMENT

AXIS OF SYMMETRY AMBIENT ELECTRONDENSITY, n (cm"3) 102103, 104 10

RE-03023 TEMPERATURE, T (eV) 10

NEUTRAL DENSITY, N UP TO 10
13/cm3

ION/ELECTRON
MASS RATIO ,

GEOMAGNETIC FIELD,
Be (W/m') 0 and 5.8 x 10-5

Figure 15. ABORC code model for a rocket-borne electron beam emission

into a neutral plasma

Electric and magnetic field solutions were obtained by finite-differencing Maxwell's

equations on a grid of 28 axial by 18 radial cells. The minimum size was 0.33 m near the

vehicle, and increased smoothly to 1.6 m at the outer boundary. This grid permits

approximately two cells per Debye length near the vehicle and is economical enough to

allow solutions of the field equations over the long simulation times. The mesh size is

slightly larger than the Debye length in the outer reaches of the volume, but it is thought

that this will have little effect far from the object. The primary limitation to finite-

differenced Maxwell's equations occurs when small /ones are required. rhen time steps
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must be reduced and computer times may become excessive. The present simulation with

a 0.74-m Debye length and non-space-charge-limited beam permits a reasonably

economical calculation.

The background plasma is represented initially by typically 2400 particles represent-

ing the free electrons. Considering the volume of each particle (particles are actually

annuli in two dimensions), we have approximately six per Debye volume near the vehicle.

This number is adequate for the close-in representation of the plasma. We have employed

considerably fewer particles per unit volume at larger distances from the object for

economic reasons.

The initial condition of the satellite-plasma system was artificial in the simulations.

In an actual experiment, an equilibrium would occur in which a sheath would exist about

the vehicle. Our simplified initial condition, in which the vehicle instantaneously appears

in the middle of a boundless, homogeneous medium and simultaneously begins emitting

electrons, results in system adjustments both to the presence of the conducting object and

to the fields caused by the energetic particles. The system is unaffected by this simplifi-

cation after a few plasma periods, but the time evolution may be suspect at very early

times.

Time scales for the simulation are determined by the Courant condition for fields, and

by the minimum transit time across a Debye length for particles. In a typical case, the

step sizes employed are 0.7 ns for fields and 20 ns for particles. Even with the resulting

30:1 time step ratio of particles to fields, the calculational cost is dominated by the

particle position updating.

The following summary highlights the ABORC code particle model used for early-time

dynamic probe behavior.

* Rotationally symmetric probe and beam modeled in 2-1/2 dimensions.

Time-dependent Maxwell's equations solved self-consistently, including effects

of space-charge limiting.

Conducting outer boundary --

-0.

= nev/2, where v is the inward component of the velocity from the

initial energy distribution emitted isotropical ly.

Lorentz force, including geomagnetic field acting on beam and plasma particles.



* Ionization of neutrals.

* Stationary ions.

• Electron albedo = 0.

4.4 CALCULATED BEHAVIOR OF THE PROBE FOR SIMPLE CONDITIONS

Figure 16 shows the time evolution of the probe potential for the simplified conditions

of no geomagnetic field and no ionization of neutrals, for several assumed background

electron fensities. Notice that the background reduces the potential compared to the case

with no plasma (the dashed line), and that the reduction is greater for greater electron

densities. The plasma is able to provide replacement current through its thermal velocity

more effectively for higher densities until, at the highest density value, the probe

potential is essentially the same as the electron temperature. However, as pointed out in

Section 4.2, the accuracy of the calculation becomes marginal when the probe potential is

not significantly larger than the plasma temperature.

I = 6 x 10 "3 amp

& 5=500 eV

n~ 0
100 n= 3 x 102 e-/cm 3

80 B.0

<60 n x 103 e-/cm3

0 I 10 eV

20-3 3 N ~0
20 n3x10 e-/cm

0 2 4 6 8 10

TIME (sec)

Figure 16. ABORC particle calculations for probe potential time
evolution for different electron densities

The case with no background plasma shows potential increasing linearly with time,

since no charge flows back to the probe to neutralize it. If the calculation had been

extended to late times, the potential would have risen to the beam energy (-4.5 kV), and

all further beam electrons leaving the probe would return.
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A direct comparison between ABORC and Rothwells code (Ref. 10) was made using

t he 10 3 /cm 3 density case of Figure 16 and a uniform emission from the surface of the

ABORC model and no geomagnetic field to be consistent with the Rothwell model. The

steady-state potentials from the two codes were within 2 or 3 V, and the oscillation

periods were within 20%, which is excellent agreement. In addition to the different

geometries between the ABORC and Rothwell models, there were several other

differences such as somewhat different boundary conditions and the Rothwell model is

quasi-static whereas ABORC is fully dynamic. The test problem calculations are

described in more detail in Reference 17.

4.5 EFFECTS OF THE GEOMAGNETIC FIELD

When the earth's magnetic field is included in the calculations, it affects both the

beam and plasma electrons (plasma ion motion perturbations due to the B-field are negli-

gible because of large mass and low velocities). The effects are summarized in

Figure 17. Beam electrons are bent into Larmour orbits (radius R[L) if they cross magnetic

field lines. They can reach a maximum distance perpendicular to the field of 2 R L, but can

spiral to great distances from the probe along the flux lines. The effect is dependent on

the magnitude of the beam current in that it becomes insignificant at large beam currents

where the probe potential always approaches the beam energy. Plasma electrons are also

constrained to move in tight orbits (equal to 0.2 m for the presently employed artificially

high temperature of 10 eV). Since the electrons cannot cross field lines, return current

comes from a tube equal approximately to the probe diameter. Higher probe potentials

result from the smaller area of the plasma supplying return currents.

The increased probe potential due to the geomagnetic field is illustrated dramatically

* in Figure 18A for a low-current electron beam emission parallel to the field. The lower

* two graphs in the figure are the total electron currents returning to the side and bottom

(Figures 186 and 18C) of the probe due to the plasma. Although it is not shown, an amount

of current comparable to that on the bottom of the cylinder returns to the probe on the

top of the cylinder. The current striking the bottom is only moderately affected by

inclusion of the earth's field, B el because electrons move parallel to it in striking that sur-

f ace. Current returning to the side is dramatically reduced, however, because the low-

energy plasma electrons cannot cross the field lines. The effect on the probe potential is

to cause it to increase substantially over the case without Be (upper figure) because the

plasma cannot provide return current fast enough to hold it down. This effect,
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demonstrated here numerically, was predicted analytically in 1967 by Parker (Ref. 6). It is

interesting that the sum of the quasi-steady current to the side of the cylinder with Be
0 (' 4 mA), the relative current to the bottom of the cylinder ( 1 mA), and an additional

estimated 1 mA to the top of the cylinder equals the emission current (6 mA), as it should
in quasi-steady state.

EFFECTS ON BEAM

* NO EFFECT FOR EMISS.ON PARALLEL TO B
e

* LIMITED TO 2RL (',8 m) RADIAL DISTANCE FROM PPOBE Be

FOR 70° PITCH ANGLE

* BEAM CURRENT LEVEL DEPENDENCE

EFFECTS ON PLASMA

* RESTR!tTS RADIAL MOTION OF ELECTRONS (RL < 0.2 r)

t x t DRIFT CAUSES J

* MOST RETURN CHARGE FROM PEGIONS IN DIRECTION
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Figure 17. Effects of earth's magnetic field

Figure 19 shows the effect of the geomagnetic field on probe potential for a wide

range of electron beam currents. The probe potential was computed with and without the
field, Bel for a low-density plasma. The results plotted are the maximum values observed

during the first 15 I.s of the simulation. The pote~itial which would have been achieved at

15 pjs in the absence of a background plasma is also plotted. This latter potential would

continue to increase until it reached the beam energy. The presence of Be increases the
potential when there is a plasma by about an order of magnitude at the smaller currents.

Note that the potential finally reaches the beam energy (-5 keV) with or without the

magnetic field for high current conditions due to the dominance of the electric field

limiting of the beam particles.

The effect of the geomagnetic field on probe potential was also considered for

different beam pitch angles. The beam was emitted parallel to the field (00 pitch) and

almost perpendicular to it (700 pitch), as illustrated in Figure 20. The beam was restricted

to an 8-m radial distance from the probe in the latter case, but it spiraled upward

unrestricted. The final probe potential was found to be the same in either case for a low
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beam current (10 - 2 A) with a 5-keV beam. Effects of the pitch angle may be slightly

greater at high beam currents, but the parameter does not appear to be significant with

regard to interpreting probe potentials based on this simulation.
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Figure 18. Probe potential and plasma return currents calculated with
and without the geomagnetic field
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t ffects of the geomagnetic field on the early-time plasma-probe behavior are

summarized below.

* B-field hinders plasma motion perpendicular to field lines.

* Probe potential increases as much as 10 times over value obtained without B-

field modeled.

* Effect on probe potential is significant at all but highest beam current levels.

* B-field reduces effective collection area of probe, suggesting a potential

dependence on probe area normal to field lines.

Probe potential is not dependent on beam pitch angle.

The field hinders plasma current returning to the vehicle, causing vastly greater

electric fields than would otherwise occur. The effects of the geomagnetic field require

modeling for all but the highly space-charge-limited beam currents to accurately predict

the potential. This behavior suggests that an interesting experiment would be to measure

the time-dependent potential of a rocket with the major axis first parallel and then

perpendicular to the field lines. The small area normal to the geomagnetic field would

presumably result in a potential that is much greater than in the orientation with the large

area normal to the field for the same beam emission current. The calculations showed

that the potential was not strongly dependent on the beam pitch angle to the magnetic

f ield.

4.6 EFFECTS OF IONIZATION OF NEUTRALS ON EARLY-TIME BEHAVIOR

Inclusion of ionization of the neutral particles in the background environment allows
beam and plasma electrons to create additional electrons and positive ions through

collisions. Effects increase with increasing neutral density in this regime, and with

decreasing beam energy. The degree of ionization will be dependent on the magnitude of

the beam current in that the beam current affects the probe potential and the energy of

the returning electrons, and thus the average ionization cross section of the electrons.

The effect of ionization in general is to reduce the probe potential by increasing the

supply of electrons available to allow replacement of the beam charge at lower field

levels.

Background ionization effects are shown in Figure 21, where the probe potential to

infinity is compared with and without a high-density neutral species present. Notice that
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the potential is approaching the beam energy (,6= 5 keV) in the case without the

background species, and that it reaches only --4 kV with ionization. The time at which

ionization effects become observable on the graph (-1 us) corresponds well with the

'dissipation time,' Tdis = 1/Nov, where a is the cross section corresponding to electrons of

velocity v which ionize the neutral background species of density N. tdis is the time

required to produce ionization charge equal to the initial ambient value, n. The values for

rTdis can be as low as 0.7 us for the present conditions, if the ionizing particles are in the

100-eV region. This energy is no doubt prominent in the plasma distribution for the

exhibited probe potential. Incoming electrons are accelerated into this energy range and

efficiently reproduce themselves through ionization.
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Figure 21. Probe potential calculated with and without Ionization

of a neutral background species

Unfortunately, the calculation had to be stopped shortly after the peak potential was

achieved due to computer costs. However, notice in Figure 21 that the potential is still

falling at 9 us. it might have converged to a steady-state value much closer to the value

typically observed, 100 V, if it had been carried to later times.
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The importance of ionization on the early-time probe behavior was quantified over a

wide range of beam currents by computing the potential with and without ionization of the

neutral particles included. Both sets of calculations included the geomagnetic field

treatment, and the ionization case was done for the estimated maximum neutral-particle

density of 101 3 neutrals/cm3 . Only moderate (< factor of 3) decrease in the peak probe

potential was computed due to ionization for the conditions shown in Figure 22 during the

15 is of the simulations. The minimum mean free path for ionizing collisions in the

calculations was -6 m, and so the lack of effect for early times is not unexpected since

typical electrons travel at most a couple of mean ionization lengths in the simulation

time (m9 pis) , so not many ionization events occur. Late-time (- ms) effects can still be

significant, however (see Section 3).

The effects of the ionization of neutrals on early-time probe behavior are summarized

below for a low-density ambient environment (n = 10 3 /cm 3).

• Ionization by primary electron-beam particles is negligible.

Acceleration of plasma electrons to energy >15 eV causes beam-current-

magnitude-dependent ionization of neutrals.

For a 5-keV beam and low-ambient-density electron environment, maximum

effect is seen at beam current magnitude of 0.06 A.

Peak potential is reduced to as little as 40% of value computed without

ionization for a neutral density corresponding to the highest value in the

altitude range of interest.

Effect on probe potential diminishes as beam current is increased beyond 0.06 A

as the probe potential approaches the beam energy. For a larger beam energy,

the largest effect of the ionization would probably occur at a larger beam

current.

Effects may be larger at higher ambient electron densities.

In Figure 22, the curve for N = 1013/cm3 is less steep than the curve for N = 0, until

the potentials approach the beam energy. Thus the effect of ionization apparently

increases with increasing beam current. Based on the steady-state results in Section 3,

this dependence probably occurs because the region over which the potential in space

exceeds the ionization threshold is larger at larger currents. Consequently, there is more

volume in which ionization can occur, and thus ionization should have a larger effect on

the probe potentials.
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Figure 22. Early-time peak probe potential calculated with the ABORC
particle model with and without secondary-electron pro-
duction due to ionization of neutral species. The value
plotted is the maximum value observed during the first
15 ps of beam emission.

4.7 SUGGESTED EXPERIMENTAL MEASUREMENTS BASED ON CALCULATED
EARLY-TIME PLASMA/PROBE BEHAVIOR

Results of the ABORC code calculations of the early-time behavior of the probe are

not directly comparable to available experimental data because the experimental data are

for essentially the steady-state late-time regime. However, the differences between the

predicted early-time and measured late-time results suggests some additional

experimental measurements.

The probe potential was tending toward measured low values when the calculations

were stopped, after having shown potentials generally much greater than the values

measured experimentally on a 1-ms time scale (Figure 21). For example, a beam current

of 0.8 A resulted in a 3-kV peak probe potential with ABORC compared to experimentally

measured values of 3 to 30 V (see PRECEDE results in Table 1). The slight differences In

beam energy between experiment and calculation would not account for any major

discrepancy in the results. An interesting measurement then would be to obtain the peak

probe potential as well as its 'steady-state' value. Then it would be significant to see if
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the peak value is sensitive to the rocket area normal to the geonlagnetic field, and if the

steady-state value is not. A rationale for the measurements is that the early-time

potential is strongly dependent on geomagnetic field effects which may be dependent on

the rocket orientation, whereas the steady-state value is driven largely by the ionization

cross section.

*1
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5. SUMMARY OF RESULTS

The following are the main conclusions from this study.

1. For small magnitudes of the beam current, the steady state potentials of an ion- or

elect ron-emitt ing probe in a partially ionized plasma can be predicted fairly well

using one-dimensional spherical models without ionization of the netural background

particles.

2. For large ambient plasma densities, where the Debye length is small compared to the

vehicle dimensions, care must be used in choosing the effective spherical radius of the

probe for making the estimates.

3. For electron-emitting probes, when the probe potential exceeds the threshold for

ionization of the neutral background gas and the mean ionization distance by

electrons is less than about 200 m, it is important to include in the predictions the

effect of ionization of neutral particles by the electrons which return to the probe to

replace the beam current.

4. The I-V curve for an elect ron-emitting probe when ionization is important apparently

goes through a maximum. At very large electron-beam currents, the probe potential

asymptotically approaches the ionization threshold energy.

5. When ionization of the neutral background gas is important, the spatial variation of

the potential curve in the region around the probe will be quite flat for considerable

distances away from the probe. Thus, a measurement of the differential potential

from the probe to some nearby point in space could be considerably less than the

potential of the probe to the ambient plasma.

6. At early times after the emission beam has been turned on, the probe can rise to a

potential that is considerably larger than the late-time potential if ionization of the

neut ralI gas i s s ign if icant.

7. The presence of the earth's magnetic field (Be) increases the probe potential relative

to what it would be in the absence of B e. The magnitude of this change is dependent

on the beam energy, the beam current, the densities of the ambient plasma and the
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neutral particles, and probably the orientation of the probe geometry relative to the

direction of the magnetic field. However, the orientation angle of the emission beam

relative to the direction of the magnetic field has little effect on the probe potential.

I
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APPENDIX A

TWO-FLUID PLASMA CODE

A.1 INTRODUCTION

This appendix describes an alternative approach that might be used in future

calculations of plasma probe problems. The idea for this approach arose late in the

present program when the difficulties of simulating late-time effects with particle-

pushing codes became apparent. A small amount of work and code development were

performed on this approach during this program, and a few preliminary results were

obtained. However, the program came to an end before the code could be fully developed

and checked out for the conditions appropriate to realistic probe environments. Hence,

this appendix just summarizes the major ideas for the approach and the status of the code.

This two-fluid plasma code is a modification of a previously existing code, PR ECHG,

to consider the plasma electrons and positive ions as two independent, charged,

compressible fluids. The original PR ECHO code was basically a Poisson's solver which

calculates the potential on an r-z mesh grid in a cylindrically symmetric geometry for an

arbitrary distribution of charge in the radial (r) and axial (z) directions. That code starts

by moving charge from one point in the geometry to another along r or z mesh lines,

leaving behind a compensating amount of charge of opposite sign on the original sites. To
conserve electric flux, an initial electric field is specified along these mesh lines,
corresponding to the amount of charge that was transported along them. Although this

initial distribution of charge conserves electric flux, it normally would not satisfy

Poisson's equation because V x E would not be zero everywhere in the volume. The code

then iterates a series of equations alternately In the r and z mesh rows, which tend to

reduce V x E to zero everywhere in the volume of interest. The iteration is terminated

when the maximum absolute value of V x E at any mesh location is below some

prespecified magnitude.

When the code is modified for a two-species plasma, the net current flow (ions minus

electrons) along each mesh line at the beginning of a time step is used to calculate a

change in the electric field along those mesh lines. Again, these electric fields normally

do not correspond to V x E =0 everywhere in the volume, so the code iterates the fields
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after each time step to bring V x E back within acceptable limits. The change in electron

and ion densities at each mesh point is then calculated from the continuity equation.

Finally, these carrier densities and electric fields are used to calculate new current densi-

ties for the start of the next time step, and the process is repeated.

Since the above procedure solves only Poisson's equation and not Maxwell's, the

results are necessarily quasi-static but still time-dependent. Fortunately, for many

situations the frequencies of interest are low enough that a quasi-static solution is quite

adequate.

The main uncertainty in the problem, as discussed later, is the proper physics to put

into the code to generate the local current densities (as functions of the densities and

electric fields or potentials) for the carrier species that is attracted to the probe and the

one that is repelled from the probe.

The first assumption that was used corresponded to both species being in quasi-

equilibrium, corresponding to the local potential at every position in space. This

assumption is appropriate for relatively high densities of the charged or neutral particles,

such that mobility-limited flow is applicable. The resulting equations are identical in form

to the equations for electrons and holes in semiconductors. The present authors have had

extensive experience in programming and solving these equations for semiconductors,

which was readily adaptable to the plasma problem. This model gave very encouraging

comparisons to the analysis of Reference 10 for a non-emitting probe, where the resulting

probe potentials were not very large, even though the analytic model in Reference 10

employed the orbit-limiting effect for the attracted (ion) species. However, it was

recognized that, for lower plasma densities and high emission currents (large probe

potentials), the quasi-equilibrium approximation for the attracted species could be

significantly in error. The 'free-fall' approximation for the attracted species is more

suitable for those conditions. Under this assumption, the velocity of the attracted species

in steady state is determined uniquely by the local electrostatic potential relative to the

background plasma. Unfortunately, the present program came to an end before the

physics corresponding to this free-fall approximation could be fully incorporated and

checked out in the code. However, preliminary results indicate that there will apparently

be no fundamental difficulties in solving the problem using this approximation.

A.2 MESH GEOMETRY

The mesh geometry for this code is illustrated in Figure 23. A body (conducting or
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dielectric) of arbitrary r-z dimensions is enclosed inside an outer conducting cylinder.

This type of system is often called 2-1/2 dimensions because bodies of finite size, similar

in shape to real space vehicles, can be simulated. If the outer cylinder is located more

than a couple of sheath thicknesses from the inner body, it will have no significant effect

on the solution to the problem.
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Figure 23. Mesh geometry for code (see discussion in Section A.2)

Carrier densities are defined at the intersections of the mesh lines and, therefore, on

the boundary of the outer cylinder and the body. These densities are essentially assumed
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uniform over the rectangular regions around each mesh intersection illustrated by the

dashed lines in Figure 23. Electric fields and current densities are defined along the mesh

lines but at locations midway between the mesh intersections -- that is, midway between

the carrier densities. In this system, the continuity equation expresses the rate of change

of the average density inside one of the dashed rectangles in the figure due to the net

current that crosses its four boundaries. Similarly, Poisson's equation requires that the net

electric flux leaving one of these rectangles must correspond to the net charge (ions and

electrons) inside the rectangle. The requirement that V x E = 0 is rigorously equivalent to

requiring that the line integral of the electric field around any enclosed area defined by

mesh lines (solid lines in Figure 23) should be zero.

A.3 PLASMA EQUATIONS

The basic equations for this code involve:

1. Particle current densities, JeJ, for each species between adjacent mesh

intersections (e = electrons, i = ions).

2. Continuity equations for each species at each mesh intersection,

n e,= Vi- e, i ' (A-i)

where n is the average carrier density in a mesh region.

3. Time rate of change of electric field between adjacent mesh intersections due

to current densities, before adjusting V x E toward zero (essentially a one-

dimensional Poisson's equation),

E=(-q ijI. - qeI )/E (A-2)

where c,0 is the permittivity of free space and qiand qeare the charges on the

k ~ ions and electrons, respectively (qi - , qe = -)' When q is used without a

subscript, it denotes the absolute value of the electronic charge.

4. V x E iteration to reduce the curls to essentially zero.

A.3.1 Current Equation for Repelled Species

in the literature on charged-particle probes, it is generally assumed that the plasma

species that is repelled from the probe is essentially in thermal equilibrium with a

Maxwellian energy distribution at every point in space (Ref. 5). If the species is actually
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in equilibrium (no currents and/or rates of change of density), the particle density at any

place in space is given by the equation

n(x) = no exp[+q4(x)/kTJ (A-3)

where no is the particle density for that species in the plasma far from the probe where

is zero, O(x) is the electrostatic potential at position x (relative to zero at infinity)

- ' E(r)dr, T is the Maxwellian temperature which characterizes the particular species,

and k is Boltzman's constant.

If there are any currents of the repelled species ir, the plasma, either steady-state or

transient, Eq. A-3 is not rigorously satisfied. However, it is fairly close to correct and can

be used to develop an equation for an effective particle current density (J) in terms of the

gradients of the particle density arid the potential.

Consider a very simple system that has only two equal-size mesh zones, as illustrated

in Figure 24, with densities n1 ,2 defined at points 1 and 2 along with the corresponding

electrostatic potentials f1,2" When the particles are in nearly thermal equilibrium at each

point, the velocities of the particles with densities nI and n2 are distributed isotropically

with Maxwellian distributions. Therefore, half of the particles at n, will be moving toward

n2 with an average velocity in the positive x direction given by

cc m 1/2 22-

vT = f x2k ) exp(-nw /kT) dv = m (A-4)
x 0 x (i m M

where m is the mass of the particles (Ref. 5). Similarly, half of the particles at n2 will be

moving toward n, with the same average velocity vTx . However, due to the potentials 4

and 02' the Maxwellian distributions are skewed in the direction of the electric field (x

direction in the present problem). The differences in the potentials at points 1 and 2 from

the value at the midpoint between 1 and 2 are ±E Ax/2. Therefore, if the potential in the

exponential in Eq. A-4 is adjusted for the electrostatic potentials at points 1 and 2, the

average velocity of the particles in one region toward the other region is

vXl= V- exp(qE Ax/kT)

and

V x2=vTx exp(-qE Ax/kt). (A-5)

The rates of change of the densities nI and n2 in this two-zone system are then
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-1 nl n2

Ax 2 -Vx 1  2 -vx2

n2 = 1-n . (A-7)

Expanding n1 and n2 about their average value nave - 1/2(n I + n2)1 and the exponentials in

Eq. A-5 up to first-order terms, and dropping the higher-order products of An = nI - n2

and qE Ax/kT, Eq. A-6 becomes

VT x -n n EAx (A-8)Ax 2av

Comparing Eq. A-8 to the continuity equation (n = -V.), one can define an effective

current density crossing the boundary between mesh points 1 and 2 as

VT (n -n+ AX)

eff - 2 In 1 - 2  nave kT (A-9)

There is a conceptual difficulty with this effective current density if one lets the mesh

width Ax approach zero. In that case, Jeff also approaches zero (for a smoothly varying

density). However, the important point to remember is that Jeff is used in the code only

in a form equivalent to Eq. A-8, which is independent of the mesh width, as it should be,

for a smoothly varying density and an approximately constant E (that is, Ax <« a Debye

length).

I r1 II V l l I

I ~I

RE -03347A

Figure 24. Two-mesh zone problem

It will be noted that Eq. A-9 has the same form as the current equations for electrons

and holes in semiconductor theory if VTx Ax/2(kT/q) is identified as an effective mobility.
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This similarity in the equations allows use of many of the analytical and computational

techniques that have been developed to study semiconductor problems (Ref. 21). However,

it is emphasized that this similarity is purely formal, and it is not implied that the repelled

plasma has an actual mobility nor that this formulation is valid only in a very high-density

plasma. The above derivation is dependent only on the assumption of quasi-equilibrium for

the repelled species at every point in space.

A.3.2 Current Equation for Attracted Species

In the literature, it is generally assumed that the plasma species that is attracted to

the probe experiences a 'free-fall' acceleration toward the probe; that is, the kinetic

energy of a particle at a position where the electrostatic potential is Vx) is given by

m 2 1 2r-v (x) mv i + q *(x) , (A-10)

where vi is the initial velocity of the particle in the region where (x) = 0 (Ref. 5).

For an initial Maxwellian distribution of particles with a velocity distribution in the x

direction given by
3(n/n 0 ) ___2

3(nxo -0 2-' kT / 2  expCMV2o/2kT )  (A-11)

when the electrostatic potential is zero, the average velocity of all the particles that end

up moving in the direction of the acceleration, when the local * is non-zero, is given by

cc / 2 - (n/n0)
S f v2  + 2qi/m n/no _dvx+ 0 Xo Vx0  x0

(A-1 2)

0 /m v 2  B(n/n )+ q/m -n x0  
3v- dv 0

The first term in Eq. A-12 comes from the particles (half the total initial distribution)

that have their initial vxos in the same direction as their final v;s. The second term

comes from particles whose initial vx0 s were opposite in direction to the final vx s but

were reversed by the accelerating fields.

Similarly, the average velocity of the particles whose initial vx0 s were opposite to

the accelerating force but whose x velocities were never reversed in direction is given by
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v /: ' 2  - 21e 'n/m d,
x Xo/ dx Xo (A-13)

When * = 0,

vT
- x I(

Vx + 2 2 2i m

from Eq. A-4. The normalization density in Eqs. A-12 and A-13 is the total density no .

Thus, the flux moving in either the positive or negative direction with * = 0 is again

(n0 / 2 ) VTx , as discussed in Section A.3o. When * is not zero, the flux in the direction of

the accelerating force is no Vx., and in the direction opposite to the accelerating force is

no Vx *

Equations A-12 and A-13 can be put into the form

V

- f , (B, V ) dv (A-14)
Tx x
x

where

= /q /kT

These equations can be numerically integrated very simply for various fixed values of B.

The ratios Vx ,/vTx are plotted vs. B in Figure 25. In the code, these functions arex

approximated numerically to give the flux of the attracted particles out of each mesh

node (with potential *) in the direction of the accelerating force (vx) and opposite the

accelerating force (vx_).

It is interesting that Vx+ can be approximated fairly well by

vT

x V1 + 4 qb/kT
2

In the limit of large *, this velocity approaches /2q/m; that is, all the particles are

moving with the velocity corresponding to a kinetic energy equal to the potential energy,

*. Conversely, at large values of *, Vx_ approaches zero, which means that there is no

flux of particles opposing the accelerating force.
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Figure 25. Average particle velocities as function of local potential, *

A.3.3 Plasma Boundary Conditions at Inner Body and Outer Conductor
For the repelled species, the flux of particles into the inner body (that is, up to the

body surface, where they are assumed to be captured or neutralized) is taken to

be nB/ 2 VTx , where Bis the total density of paricles just outside the body (Ref. 5)

and VTx is the average thermal velocity in the x direcdikwn of half the particles nB (Eq.

A-4). This boundary condition is consistent with the assumption that the repelled species

is everywhere in quasi-equilibrium; that is, half of the particles are moving toward the

inner body and half are moving away, even adjacent to the body. In reality, right at the

surface, there can be no outward current due to shadowing by the body (in the absence of

secondary emission, which has been Ignored thus far in this code).
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However, to be consistent with the analytical treatments (Refs. 5,10) and the quasi-

equilibrium assumption for the repelled particles, shadowing by the body is ignored.

At the outer boundary, the density of the repelled species is assumed to be fixed at

the bulk value, no. The net flux of these particles across the outer boundary is determined

by Eq. A-9, where n2 is the bulk density at the outer boundary, n 1 is the density at the

first mesh point inside the boundary, and E is the electric field between these two points.

The magnitude of this current is determined self -consistentlyV in the code to satisfy the

time-dependent rates of change of density inside the volume and the current of this

species into the center body.

For the attracted species the flux into the center body is given by nBvx+,
where nB is now the total density of the attracted species adjacent to the center body.

Again, everywhere outside the center body, including the immediately adjacent mesh

positions, it is assumed in the code that there is a flux of particles away from the center

body given by nB vx_. Very close to the center body, this outward flux should be reduced

by shadowing. However, this shadowing effect has been ignored in the code. Fortunately,

for large attracting potentials, vx_ approaches zero, so the shadowing effect is correctly

accounted for at large attracting potentials.

At the outer boundary, the density of the attracted species is also fixed at the value

of the bulk density, n0 Thus, since the potential of the outer boundary is taken to be

zero, there is an inward flux of attracted particles (no/ 2)vT. However, there is also an

outward flux of attracted particles from the first mesh point inside the outer boundary,

given by n, ;, where n 1 is the total density of attracted particles at the first zone

inside the boundary. Thus, again, the net flux of the attracted particles across the outer

boundary is determined seIf -consistently by the code to satisfy the time rate of change of

the particle densities in the volume and the current into the center body.

A.3.4 Simulation of Emission Current

At present, the code cannot simulate the emission of a discrete beam of charge

particles with finite initial energies. The simulation of emission current that is now in the

code is equivalent to the outward emission of very high-energy particles, approximately

uniformly from the surface area of the emitting body. The high-energy condition means

that the emitted particles are slowed down negligibly by the body potential and their

transit time from the emitting body to the outer boundary of the simulation volume

(essentially a few Debye lengths away) is negligible compared to the response times of the

66



plasma. This condition means that the present code cannot simulate the nonlinear effects

where the body potential would approach the beam energy and significantly slow down the

beam particles.

The following is the procedure used in the code. At the start of a plasma problem,

the Poisson-solver portion of the code is run first for a unit charge differetitial between

the emitting body and the outer boundary. The ccde iterates the electrical fields until V x

E due to this charge differential is essentially zero throughout the volume, and then stores

these normalized fields for future use. In the plasma problem, the amount of charge AQ

that is emitted during each time step is assumed to instantly arrive at the outer boundary

and instantly distribute itself over the outer boundary, consistent with a quasi-static

charge differential. The electric fields at every point irside the simulation volume are

then incremented by the normalized precharge fields calculated at the beginning of the

plasma problem times the charge AQ emitted during that time step. The total resulting

electric fields (the previous fields plus the increments due to AQ) then act on the two

plasma species during that time step.

A.4 CODE STATUS AND PRELIMINARY RESULTS

As mentioned in Section A.1, an early version of this code, which treated both charge

species in a quasi-equilibrium approximation, was used to try to reproduce the curve in

Reference 10 for the potential of a non-emitting probe in a plasma as a function of the

ratio of the electron and ion temperatures. In Figure 26, the present calculations are

compared to the analytical result from Reference 10. Although the agreement between

the two results is outside the bounds that one might expect just due to numerical

computational techniques, the agreement is good enough to indicate considerable promise
for the code, especially since the two models do not use precisely the same physics for the

attracted species, and one geometry is cylindrical and the other spherically symmetric.

Also, it should be pointed out that at least part of the discrepancy at the larger values of

Te/Ti results from these calculations being terminated before the slow-moving ions (small

Ti) had reached a complete steady-state condition. In this early version of the code,

explicit time integrations (using the velocities at the beginning of the time steps) were

used to move the electrons and ions during the time steps. When the electron and ion

velocities are widely different, as is the case with large Te/Ti, computational Instabilities

in the electron densities usually result if the time step is made larger than the electron

1 .l..%i ol i, leal I4 % 'sll l toll II,1 a i 1l 1 I, ull t ill I he low ly '* ",l'~'' 'i gK l oio. I #if II l oll Iv%
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such as these can be overcome with implicit integration techniques that calculate the

change in carrier densities during a time step, using some average velocity during that

time step. This type of integration would be implemented in any future version of the

code.

10.0 REF. 10

1.0

~A0.1

0.01 PRESENT CODE WITH
QUAS I-EQUILIBRIUM
DYNAMICS FOR IONS
ANJD ELECTRONS

0.001
0.4 0.8 1.2 1.6 2.0 2.4 2.8

RE-03349 e p 1k e

Figure 26. Comparison of present code with analytical predictions frfom
Reference 10 (no secondary emission from probe). Te and T .
are temperatures of electrons and ions, respectively.

V The present status of the code is that the free-fall approximation for the attracted

species has been programmed in a particular manner and a crude form of implicit

integration has been implemented. However, there are some computational and physics

difficulties with this formulation that require some additional work, It is anticipated that

a more stable implicit integration procedure and the required new physics formulation

could be accomplished with a modest effort.
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AS FUTURE CODE CAPABLITIES

There are some additional problems for which a code such as the present one would be

useful, but they would require some additional modifications to the present coding. Two

of the more Important applications are avalanche ionization of the neutral background gas

by energetic electrons, either those emitted from the probe or those returning, and the

effects of photo-ionization and the resulting photon-driven current when a photon beam

interacts with the background neutral gas.

In both these problems, the question is how to combine the newly created electrons

and ions, which would have some velocity distributions, with the already existing electron

and ion densities, which would normally have different distributions.

A simple, but crude, approach would be to assume that the newly created particles

have the same velocity distributions as the previously existing particles at every location

in space. This approach might not be too erroneous for avalanche ionization, where the

dominant velocities for the new and old electrons would at least be pointing in the same

directions. However, it would be very poor for trying to simulate a photon-driven current

at some angle to the dominant velocities.

A somewhat more refined approach would be to combine the momenta of the new and

old particles vectorially at each mesh location and use the combined momentum

(magnitude and direction) to specify the velocity of the shifted Maxwellian. Obviously,

this approach is not vigorously correct either. However, Crevier (Ref. 22) has shown that

a similar procedure, when used with SGEMP electrons, gave results that agreed very well

with equivalent particle-pushing techniques. Apparently the details of the distributions

are not too critical, at least for gross effects, as long as the momentum and energy of the

plasma clouds are conserved. However, adoption of this approach would require a mod-

ification of the free-fall formalism, since the free-fall approach assumes that the net

velocity of the plasma cloud is a function only of the local potential. A form of the free-

fall coding which has been developed recently would be compatible with this approach for

including electron and photon ionization. In addition, it appears that the new coding

method will be computationally more stable. Again, these modifications to the code

should not require an extensive effort.
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